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Abstract

Magnetic attitude control systems are extremely common for small satellites due to their
simplicity, low cost, and compactness. They however lack a degree of freedom: they cannot
apply torque about a magnetic field line. This thesis proposes a hybrid attitude control
system consisting of one double-gimbal variable-speed control moment gyroscope and three
orthogonal magnetic torque actuators. The VSCMG is chosen to make up for the lost degree
of freedom with minimal hardware. The dynamics equations are derived then control laws
are proposed and analyzed for cases of detumbling the spacecraft and holding it at a given
attitude. The performance characteristics are analyzed with respect to the control gains
for each actuator type and optimal ratios of the two are identified. This hybrid system is
shown to have better convergence time in detumbling and precision in attitude holding than
a purely magnetic system.
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Introduction

Attitude control for spacecraft usually requires a relatively large, expensive system to per-

form. In most large spacecraft, including the Space Shuttle [1], this is done with a mono-

propellant or cold gas thruster reaction control system, which require careful positioning, a

structure to distribute the force on the frame, and large propellant tanks that pose a safety

hazard and change the mass distribution as they are used up. An alternative is reaction con-

trol wheels (RCW), which have the advantage of being mounted internally and conserving

energy, but can be saturated and require a carefully-fabricated low-friction environment to

function. More recently, low-cost satellites, especially those following the “cubesat” standard,

have taken advantage of the magnetic field of earth for attitude control.[5] Electromagnetic

torquers are precisely controllable, have no moving parts, and can be mounted internally like

RCW. They however have one major drawback. From the cross product for torque:

~τmta = ~m× ~B = ~Fbm×Bb (1)

The torque vector ~τ will always be orthogonal to the magnetic field line ~B, hence there is

one rotational axis that magnetic torquers will always lack. This can be solved by acting

on perturbations in the magnetic field, but this would mean waiting for certain opportune

positions in the orbital path. Other alternatives involve combining magnetic torquers with

RCWs or traditional thrusters, which have been well studied by my supervisor, Professor

Damaren.[8][26] This however provides redundant degrees of freedom.

The solution that I am investigating is combining the magnetic torquers with a variable-

speed control moment gyroscope (VSCMG) mounted inside a two-axis gimbal. I am inves-

tigating the dynamics and control laws governing this system and its efficiency compared

to other arrangements of attitude control systems. The dynamic equations will be derived

assuming a spacecraft of known geometry and mass and conserved angular momentum. The

first stage of control law testing is for detumbling, followed by full attitude control via pro-

portional derivative feedback. The VSCMG component will be linearized for ease of analysis

and complemented with numerical simulations.
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Chapter 1

Background

1.1 ACS Mechanisms

For most spacecraft orbiting the Earth, there are five main options for an Attitude Control

System (ACS). These are impulsive thrusters in a Reaction Control System (RCS), Gravity

Gradient Stabilization (GGS), Reaction Control Wheels (RCW), Magnetic Torque Actuators

(MTA), and Control Moment Gyroscopes (CMG), which further divide into constant speed

and variable speed versions.

An impulsive thruster RCS is common on large spacecraft like the Space Shuttle [1] with

high moments of inertia and where fuel is more abundant. These systems are arrangements

of thrusters around a spacecraft offset from the centre of mass. To get the spacecraft to

rotate, pairs of opposed thrusters will fire at the same time and throttle so that there is no

net translational force on the spacecraft. These systems are relatively large and complicated

compared to the other systems discussed here and require the most structural accommoda-

tion. They also require an onboard supply of mass to eject, thus they cannot be recharged

indefinitely with a solar panel. For these reasons, these systems are not found on small

spacecraft.

GGS takes advantage of the fact that gravity is weaker with greater altitude. The near

side of the spacecraft is being pulled on with stronger gravity than the far side, applying a

torque that keeps the same side facing the Earth. The greater asymmetry between principal

axes’ moments of inertia, the stronger this effect. Like the RCS, this has been used with

larger spacecraft, such as the Salyut-Soyuz orbital complex [22]. In order to augment the

effect, many spacecraft designed to use GGS will feature a long weighted boom arm. The

torque applied is given by Equation 1.1 [26].

2



Chapter 1. Background 3

~τggs = ~Fb
3µ

R5
p×b Isatpb (1.1)

The RCW consists simply of a motorized heavy flywheel. By conservation of angular

momentum, accelerating the flywheel applies a torque to the spacecraft in the opposite

direction. In their prototypical configuration, three RCWs are mounted on orthogonal axes

so that a spacecraft has full attitude control. Due to their simplicity, they are common on

smaller and lower-cost spacecraft, especially cubesats. A drawback however is that these

wheels cannot spin infinitely fast; at some point the RCW reaches its maximum speed (i.e.

is ’saturated’) and the ACS then loses that degree of freedom. This can happen in very

long-term missions where the net torque over time from the environment is nonzero. In most

spacecraft, this is usually due to gravity gradient effects. For a single RCW, the torque

applied is given in Equation 1.2.

~τrcw = ~FbIgαg (1.2)

There are two common configurations of CMG. The simplest type is the single-gimbal

CMG, where a motorized gyroscope is placed inside a gimbal carriage. This carriage rotates

on an axis orthogonal to the gyro axis. A more complicated version of CMG is the double-

gimbal type, where there are two carriages with initially orthogonal rotary axes. The CMG

applies a gyroscopic torque when a gimbal carriage rotates, and this torque is is proportional

to both the angular speeds of the gyro and of the gimbal carriage. The gyro may be either

fixed or variable speed; Section 2.2.1 presents the variable speed version dynamics in detail.

For the fixed speed version, the dynamics can be obtained by setting Ω̇g = 0.

Only the double-gimbal VSCMG configuration provides the full three degrees of freedom.

Other versions of CMG must be used in arrangements of more than one in order to obtain full

attitude control. Whatever the type or arrangement of CMG, it can saturate when it reaches

a position called “gimbal lock”, where enough control axes are parallel such that a degree of

freedom is lost. In the case of a double-gimbal VSCMG, this is where the gyro axis is parallel

to a gimbal axis. Like with RCWs, this can occur on especially long-term missions, but can be

delayed by giving the flywheel a higher angular speed, hence requiring less gimbal movement

for the same torque. When supplemented with saturation-free actuators like MTAs, gimbal

lock can be avoided completely.

MTAs harness Earth’s magnetic field for attitude control. They consist of electromagnets

fixed to the body of the spacecraft, so that when they are powered they will try to line up with

the environmental magnetic field lines. They usually take the form of solenoid electromagnets

with a high-permeability core. Like RCWs, they are often in arrangements with three on
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orthogonal axes. While these have the benefit of never saturating, they are less effective

at more distant orbits and the rest of the spacecraft must be designed to handle the EMI

caused by it. They also have the drawback that, since torque applied is the cross product

of the MTA’s field and the environmental magnetic field vector, the torque axis must lie in

the plane that the field vector is normal to. Therefore at any given time, the MTA-equipped

spacecraft is lacking a degree of freedom. This is usually managed by taking advantage of

the time-varying nature of Earth’s magnetic field over the course of an inclined orbit, but

MTA control has a fundamental gain restriction to guarantee stability, as detailed in [14].

This limits the convergence time and thus the precision of the ACS. The torque applied by

a single MTA is given in Equation 1.

1.2 Brief History of the MTA

One of the earliest studies into the use of MTAs on spacecraft for attitude control was

conducted by NASA Ames researchers in 1961.[21] It demonstrated a variation in magnetic

field strength with approximately twice orbital frequency, demonstrated two-axis attitude

control for the Orbiting Astronomical Observatory within 0.5 µrad, and proposed the MTA

as a method of desaturating other actuators in a hybrid system. The B-dot control law,

which has become the standard for three-axis MTA systems and is the starting point for

MTA control laws considered in this thesis, was first proposed in [4] in 1974. A survey of

attitude control by MTAs demonstrated convergence using simulations of different control

procedures, including controllers designed using linearized dynamics and the B-dot law.[23]

The B-dot law (and its approximation discussed here in Section 3.1.1) was the only nonlinear

controller design strategy discussed in the survey.

The Ørsted satellite in 1999 made use of GGS and MTAs in a hybrid system in a mission

to study the Earth’s magnetic field; the scientific instruments onboard were highly precise

magnetometers and a star tracker that were used for both data collection and attitude

control. A paper studying this ACS demonstrated detumbling convergence for variable-gain

and LQR controllers.[28] The potential for use in microsatellites has been recognized and

realized over the past few years especially. A good example is the UPMSAT-2, a technology

demonstrator that uses the B-dot law alone for its ACS.[29] The OUFTI-1 and OUFTI-2

cubesats which were deployed in 2016 used MTAs for attitude control. On top of the B-

dot and LQR controllers, the paper on OUFTI’s attitude control system considered a PID

controller based on desired torques, but none of the three produced comparable accuracy

to a PD controller for a hybrid system of MTAs and RCWs, which the paper ultimately

recommended.[9]
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1.3 Brief History of the VSCMG

An early study of the use of CMGs in spacecraft attitude control was conducted by Boeing

researchers in 1966.[6] It contained a derivation of the dynamics for both the single and

double-gimbal constant-speed versions and demonstrated controllability in an analog com-

puter simulation. Much of the research since then has gone into strategies to avoid the

singularities, concerning optimal physical arrangements[2] or initial poisitons.[17] The use of

a single double-gimbal VSCMG for attitude control has been proposed before in [12], which

proposes and demonstrates stability for the same control law that is used in this paper.

More recently there has been interest in CMG clusters for small satellites, demonstrating a

potential performance advantage over RCWs for similar size spacecraft.[13]

CMGs were first used on a spacecraft in Skylab in 1973. Three double-gimbal CMGs

were mounted with initially orthogonal gyro axes. The range of motion on each gimbal

carriage was mechanically limited: the inner gimbal had stops at ±1.4 rad and the outer

gimbal had stops at −2.3 rad and 3.8 rad.[3] The control logic was designed to minimize

encounters with the gimbal stops, so the CMGs were not as effective as they could have

been with a less limited controller. The Mir space station had an array of twelve CMGs,

six mounted on each of two modules. These CMGs however were only used for holding a

given attitude. When the space station’s attitude needed a large adjustment, the CMGs

were disabled and impulsive thrusters moved it to the new position.[20] The only current

spacecraft that uses CMGs is the ISS, which has an array of four. While this system is

also primarily intended for attitude holding rather than adjustment, the space station has

performed limited maneuvering using the CMGs. In particular, they have been used during

undocking of the Soyuz to save propellant.[25]

1.4 Hybrid Arrangements

ACSs on small satellites, especially those following the cubesat standard, tend to be ex-

tremely simple. On a 1U cubesat, the ACS is restricted to 150− 200 g of mass and 1 W of

power consumption. Because space, weight, and power are so limited, simple passive ACS

are popular among cubesat designers.[16] Because GGS has a weaker effect on small, sym-

metric spacecraft, this passive control is most easily accomplished by permanent magnets

that make use of the same effect as MTAs. To bridge the gap for these smallest cubesats,

there has been successful research into making use of hybrid passive/active magnetic sys-

tems for attitude control.[16] Entirely active systems do not become common until we look

at larger cubesats.
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For medium to large cubesats, the two most common active ACSs are RCWs and MTAs.

Damaren has studied the case of combining these two actuators in a hybrid ACS and demon-

strated the success of such a method even with fewer than three RCWs available.[1] For

larger spacecraft still, where impulsive thrusters are a practical option, Damaren has also

studied the hybrid ACS of thrusters and MTAs and, with an optimized linear controller,

demonstrated improved performance and reduced MTA effort with missions that require

high pointing accuracy.[26]

My thesis is a similar hybrid analysis, where the combination is of three orthogonal MTAs

and a VSCMG. Like with RCWs, the MTAs have the ability when properly oriented to

desaturate the VSCMG, while the VSCMG can make up for the lost axis of an MTA system

and do so in a far shorter convergence time. Like Damaren’s work, my thesis attempts to find

an optimal combination of the different systems within the hybrid. This is fundamentally

different from a superficially similar branch of research that includes [18], which decomposes

desired attitude control into MTAs and three independent torque axes.

For an attitude control system of three independent torques, it has been shown that

almost global stability can be guaranteed by a PD feedback system for any choice of pos-

itive gains [27]. With the reduced system of an ACS consisting of only MTAs, stability is

guaranteed within certain gain limits [14], but it remains that a PD control law is sufficient.

While other hybrid systems have been examined, the dynamics and optimal control laws

for an ACS consisting of a VSCMG and MTAs have not been studied before. There are

many possible approaches to defining optimality for such a system; one previously used

by Damaren is to only use the impulsive thrusters when the MTAs are least capable of

controlling the spacecraft [26]. While not necessarily optimal in terms of exertion and power

consumption, it was reasonably used as a proxy for pointing performance. For the smaller

spacecraft that a VSCMG/MTA hybrid is anticipated for, power consumption and exertion

are considered to be more important factors; the former because power is more limited, and

the latter because VSCMGs can saturate. When optimality conditions are properly defined

(possibly as a weighting of multiple criteria), finding the optimal control laws then requires

linearization of the model [11], leading to an LQR problem.

1.5 LQR Optimization

A general LQR problem is defined in Equations 1.3a and 1.3b, where T is the maximum

convergence time, x is the state vector, u is the vector of inputs, andQ andR are symmetric

cost matrices informed by the desired optimality conditions. It is a calculus of variations

problem, where the goal is finding an optimal u(t) to minimize J . First, we define a value
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function Vt0(z) as in Equation 1.3c, where z = x(t0). Vt0(z) gives the minimum cost left

from t0 > 0 to T . Vt0(z) can be put in the form of Equation 1.3d, as u can be defined in

terms of x. The optimal control laws are then found by computing the control matrix K in

terms of the solution X to the continuous Riccati equation and (see Equations 1.3e, 1.3f).

See [7] for everything in this paragraph.

ẋ = Ax+Bu (1.3a)

J =

∫ T

0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt (1.3b)

Vt0(z) = min
u

∫ T

t0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt (1.3c)

Vt0(z) = zTXz (1.3d)

ATX +XA−XBR−1BTX +Q = 0 (1.3e)

ẋ = Ax+Bu = Ax−BKx =
(
A−BR−1BTX

)
x (1.3f)

This form of analysis however may prove simplistic if the desired mission requires large

movements in the VSCMG. Linear approximations for the trigonometric functions in the

torque equations (see Equation 2.9) only apply within a small range of the point of lineariza-

tion, so unless the VSCMG gimbal motors moves relatively little, numerical analysis may be

required to optimize this controller. This condition may only be met when the controller is

used to hold a constant attitude, and even then for a short period of time, lest disturbance

torques accumulate.

1.6 Magnetic Field Modelling

The position of the satellite is modelled with a circular Keplerian orbit (see Equations

1.4). Earth’s magnetic field in the spacecraft body frame is modelled with the analytic

approximation presented in Equations 1.5 taken from [24].

n =

√
µ

R3
(1.4a)

pi = R

 cos(nt)

sin(nt) cos(φ)

sin(nt) sin(φ)

 (1.4b)
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Bi =
B0

R5

 3pi,xpi,z

3pi,ypi,z

2p2
i,z − p2

i,x − p2
i,y

 (1.5a)

Bb = Ri
bBi (1.5b)

WhereRi
b is calculated from the orientation of the spacecraft. In a hypothetical spacecraft

Bb would be found by an onboard magnetometer, and for reasons discussed later, it can be

assumed that in the case of detumbling Bi is not known.

1.7 Disturbance Torques

As argued in [26], the dominant sources of disturbance torques are taken to be the spacecraft

gravity gradient and residual magnetic field from the onboard electronics. These are modelled

in Equation 1.6, where the terms are taken from Equations 1 and 1.1.

~τdist = ~τggs + ~τresmag = ~Fb
(

3µ

R5
p×b Isatpb +m×

distBb

)
(1.6)

The torque due to residual magnetic field may not be a steady torque. As systems are

activated and deactivated at different points in the mission, the changing magnetic field will

produce a jerky torque that the spacecraft will have to respond to immediately, perhaps even

preemptively. This could lead to a further augmenting of the control system, or merely a

test of disturbance response for a system unaware of residual fields.

The torque due to GGS is a much steadier disturbance than the residual field. Unless

the moments of inertia are the same on all three principal axes or the ’heaviest’ axis is lined

up with the gravity gradient, a predictable and steady torque is applied. This poses an issue

if the desired attitude results in a constant GGS torque, as the PD system will converge on

a steady state attitude offset from the desired attitude. This is because at the steady state,

the net torque is zero. However, there is a nonzero GGS torque. Since at steady state the

D term will be zero, there must be a nonzero P term which produces a torque equal and

opposite to the GGS torque. This implies a nonzero error at steady state.

The nonzero error can be resolved two ways: either the desired attitude sent to the

controller is shifted so that the steady state converges on the real desired attitude, or an I

term is added to the controller. This measures the time integral of the position error, also

known as absement. If such a controller is used, then the integral of a nonzero error will

accumulate until the difference is closed, requiring that the steady state error approaches

zero.



Chapter 2

Dynamics of Proposed Spacecraft

2.1 Spacecraft Design

The spacecraft attitude control system being considered consists of one VSCMG and three

independent, orthogonal MTAs. When rate limits are imposed, each MTA has a dipole

moment limit of mmax = ±12 Am2.[15] The moment of inertia matrix is diagonal, which

implies that the ACS is mounted such that its torques are exerted about the spacecraft’s

principal axes. The principal axis moments of inertia for the spacecraft are:

Isat =

21 0 0

0 25 0

0 0 27

 kgm2 (2.1)

The moment of inertia for the gryoscope in the VSCMG is Ig = 0.001kgm2 about the

spinning axis and assumed to be negligible about the other two. It starts at an initial angular

speed of Ωg = 200π rad/s = 6000RPM . When rate limits are imposed, the gimbal rates

are limited to γ̇max = ±5 deg/s = ±π/36 rad/s and the gyro acceleration is limited to

Ω̇g,max = ±10 rad/s2. These VSCMG characteristics were taken from the design proposed

in [19] for small spacecraft.

The residual magnetic dipole is:

mres =

0.001

0.001

0.001

Am2 (2.2)

The spacecraft is orbiting the Earth at an altitude of 400km and an inclination of 40deg

above the equator.

9
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2.2 Dynamics Equations

2.2.1 VSCMG Dynamics

The torque applied by a VSCMG was calculated assuming:

1. Negligible moments of inertia for the gimbal carriage.

2. Angular rates of the gimbal axes γ̇o and γ̇i are much smaller than Ωg.

To derive ~τvscmg, we start with the angular momentum in the gyro frame:

Lg =
[
0 0 IgΩg

]T
(2.3)

First the single-gimbal case is considered. This is to demonstrate the same derivation

process as is used in the double-gimbal case, even though it is not part of the assumed

spacecraft design. To bring the angular momentum into the body frame, we require rotation

matrices from the gyro to the gimbal carriage (Rg
c) and from the gimbal carriage to the body

(Rc
b). For each reference frame, the z axis is parallel to the local revolute joint and the x

axis is normal to the plane containing the previous and next revolute joints. The rotation

matrices are:

Rg
c =

 0 −1 0

0 0 1

−1 0 0

 ,Rc
b =

− sin(γ) − cos(γ) 0

0 0 1

− cos(γ) sin(γ) 0

 (2.4)

The angular momentum in the body frame is therefore:

Lsgcmg,b = Rc
bR

g
cLg =

−Ig cos(γ)Ωg

0

Ig sin(γ)Ωg

 (2.5)

Taking the derivative to get torque, we find that it is now a linear function of the gimbal

rate and gyro acceleration, where the matrix operator H is a function of the VSCMG’s state

s:

~τsgcmg = ~FbIg

sin(γ)Ωg − cos(γ)

0 0

cos(γ)Ωg sin(γ)

[ γ̇
Ω̇g

]

= ~FbH(s)ṡ

(2.6)
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Figure 2.1: Double-Gimbal VSCMG with Zero Gimbal Angles

For the double-gimbal case as in Figure 2.1, we require three rotation matrices: from the

gyro to the inner gimbal (Rg
i ), from the inner gimbal to the outer gimbal (Ri

o), and from the

outer gimbal to the body (Ro
b). For each reference frame, again the z axis is parallel to the

local revolute joint and the x axis is normal to the plane containing the previous and next

revolute joints. The rotation matrices are:

Rg
i =

 0 −1 0

0 0 1

−1 0 0

 ,Ri
o =

− sin(γi) − cos(γi) 0

0 0 1

− cos(γi) sin(γi) 0

 ,Ro
b =

− sin(γo) − cos(γo) 0

0 0 1

− cos(γo) sin(γo) 0


(2.7)

The angular momentum in the body frame is therefore:

Ldgcmg,b = Ro
bR

i
oR

g
iLg =

Ig sin(γo) cos(γi)Ωg

Ig sin(γi)Ωg

Ig cos(γo) cos(γi)Ωg

 (2.8)

Taking the derivative to get torque, we find again that it is now a linear function of the
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gimbal rates and gyro acceleration. Here, G represents the matrix function of state c:

~τdgcmg = ~FbIg

 cos(γo) cos(γi)Ωg − sin(γo) sin(γi)Ωg sin(γo) cos(γi)

0 cos(γi)Ωg sin(γi)

− sin(γo) cos(γi)Ωg − cos(γo) sin(γi)Ωg cos(γo) cos(γi)


 γ̇oγ̇i

Ω̇g


= ~FbG(c)ċ

(2.9)

The G matrix has singularities at Ωg = 0 and at γi = ±π
2
, which means that in those

conditions the VSCMG has fewer than all three degrees of freedom. Because the proposed

spacecraft design includes a double-gimbal VSCMG, references to ~τvscmg elsewhere in the

document can be taken to refer to ~τdgcmg.

2.2.2 Total Dynamics Equation

For rigid body dynamics the Euler equation for rigid body dynamics is used, with the torques

due to the VSCMG (Equation 2.9), MTAs (Equation 1), gravity gradient (Equation 1.1),

and residual magnetic field on the RHS, resulting in Equation 2.10. The equation is then

rearranged into state space form (see Equation 2.11).

~Fb
(
Isatω̇ + ω× (Isatω +Ldgcmg,b)

)
=
∑
i

~τi = ~τvscmg + ~τmta + ~τggs + ~τresmag

= ~Fb
(
Gċ+m×Bb +

3µ

R5
p×b Isatpb +m×

resBb

) (2.10)

ω̇ = I−1
sat

[
Gċ+m×Bb +

3µ

R5
p×b Isatpb +m×

resBb − ω× (Isatω +Ldgcmg,b)

]
(2.11)

And now we require control laws to determine the inputs ċ and m. The former not only

determines the input, but forms a state-space equation of its own for the VSCMG state c,

which is needed to calculate G.

In the following chapters, nonlinear and LQR control laws will be proposed and evaluated

for two scenarios: detumbling a spacecraft from some initial angular velocity, and holding a

spacecraft at a desired angular position.



Chapter 3

Nonlinear Control

3.1 Detumbling Control Feedback

Assuming the spacecraft has nonzero initial angular velocity (e.g. because it was just ejected

from the rocket that carried it into orbit), this controller must bring the angular velocity to

zero. For detumbling, the final orientation is not important as long as it is constant.

3.1.1 Proposed Control Laws

The control feedback laws for m and ċ therefore follow the angular rates of the spacecraft

and Earth’s magnetic field, as shown in Equations 3.1 and 3.2.

m = −KmḂb (3.1)

ċ = −KcG
Tω (3.2)

Kd =

Kc,g 0 0

0 Kc,g 0

0 0 Kc,w

 (3.3)

Where Km is a scalar gain and Kc is a diagonal matrix of gains. Kc takes the form shown

in Equation 3.3, where Kc,g is the gain for the gimbal carriages and Kc,w is the gain for the

flywheel. From the definition for G(c) in Equation 2.9, the torque applied by an equivalent

change in γ̇o or γ̇i and Ω̇g differs by a factor of Ωg, therefore to equalize the torque on all three

axes, Kc,w = ΩgKc,g. References to Kc,x elsewhere in the document where x is a different or

no subscript can be taken to refer to Kc,g.

The control law for m in terms of Ḃb will attempt to follow the magnetic field line rather

than the absolute angular position of the spacecraft. This can be useful if the spacecraft

13
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is supposed to keep a certain side facing the ground, but otherwise it would be preferable

to have a control law in terms of ω. This can be recovered through an approximation.

The derivative in the body frame would normally be calculated through Equation 3.4. But

with the assumption that our spacecraft’s angular rates are much faster than the change

in magnetic field in the inertial frame due to the spacecraft’s orbit around the Earth, we

assume that Ḃi ≈ 0, leading to Equation 3.5.

Ḃi = Ḃb + ω×Bb (3.4)

Ḃb ≈ −ω×Bb = B×
b ω (3.5)

And this all can be incorporated back into Equation 2.11, producing Equation 3.6.

ω̇ = I−1
sat

[
−GKcG

Tω −KmB
×
b B

×
b ω +

3µ

R5
p×b Isatpb +m×

resBb − ω× (Isatω +Lcmg)

]
(3.6)

To compute G, the equation for ċ (Equation 3.2) must be solved in parallel to Equation 3.6.

3.1.2 Lyapunov Stability of Detumbling Controller

Stability is determined by the rate of change of kinetic energy (see Equation 3.7), which

must be ≤ 0. The ω̇ term can be filled in using Equation 3.6, producing Equation 3.8. The

disturbance torques are neglected here as they are much smaller in magnitude than the active

torques. We first observe that the last term must be zero, leaving the two control terms.

B×
b B

×
b as the product of two cross product matrices is negative semidefinite, therefore for all

Km < 0, −Kmω
TB×

b B
×
b ω ≤ 0. If the diagonal elements ofKc are all> 0, then becauseGGT

is positive semidefinite, GKcG
T is also positive semidefinite. Therefore −ωTGKcG

Tω ≤ 0.

Because both terms are less than or equal to 0, it follows that Ėk ≤ 0, meaning the system

is stable.

Ek =
1

2
ωTIsatω ⇒ Ėk = ωTIsatω̇ (3.7)

Ėk = ωT
[
−GKcG

Tω −KmB
×
b B

×
b ω − ω

× (Isatω +Lcmg)
]

= −ωTGKcG
Tω −Kmω

TB×
b B

×
b ω − ω

Tω× (Isatω +Lcmg)

= −ωTGKcG
Tω −Kmω

TB×
b B

×
b ω

(3.8)

As will be seen in simulations in Section 3.3, when the disturbance torques are comparable

in magnitude to the active torques, kinetic energy no longer tends monotonically to zero.
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3.2 Extension to PD Controller

The controller discussed so far was just the detumbling controller, as the control inputs are

proportional to the angular velocity ω. If there is no angular velocity, there is no control

input. Because it is proportional to the derivative of angular position, it is a D controller. To

not just detumble the spacecraft but to also maintain a given position, the controller must

also produce corrective input when the position error is nonzero. Position is represented

here using the vector component ε of the unit quaternion q =
[
η ε

]
. The unit quaternion

was chosen to represent orientation because it lacks the issue of singularities (gimbal-lock)

associated with Euler angles. The propotional-derivative (PD) controller makes use of the

same control laws for both terms as per Equation 3.9, with new control gains Km,p and Kc,p

for the P terms. The controller will attempt to bring the spacecraft to the state where ω = 0,

ε = 0, and η = 1 (because for a unit quaternion, |q| = 1).

m = −Km,dB
×
b ω −Km,pB

×
b ε (3.9a)

ċ = −Kc,dG
Tω −Kc,pG

Tε (3.9b)

While ε is usually written with a 2 coefficient to relate it to the magnitude of the rotation

angle, this has been absorbed into the gains Km,p and Kc,p for brevity.

3.3 Steady-State Simulations

This scenario starts the spacecraft in the desired state. All that is required of the controller

is to respond to the disturbance torques due to GGS and residual magnetic field. This is

only doable with a PD controller, so the control laws in Equation 3.9 are used.

3.3.1 Error Minimization with Gains Tuning

To reduce the degrees of freedom involved with tuning the nonlinear controller from 4 to

2, the D gains were chosen arbitrarily to be the independent variables, and the Matlab

built-in optimizer fmincon would be utilized to find an optimal ratio of the D and P gains to

minimize the mean square error in ε over a half orbital period. This mean square error is used

to evaluate the chosen gains in Figure 3.1, and the corresponding optimized gain ratios are

given in Figure 3.2. The range of D gains tested wereKm,d ∈ [106, 1010] andKc,d ∈ [10−2, 101].

For these simulations, no rate limits have been imposed on the controllers. Note that the

two spikes that appear in Figure 3.1 do not represent the genuine behaviour of the error

plot; those are merely where fmincon failed to properly converge.
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Figure 3.1: Mean Square Error over VSCMG and MTA D gains

(a) VSCMG P/D Gain Ratio over D Gains (b) MTA P/D Gain Ratio over D Gains

Figure 3.2: P/D Gain Ratios Over Km,d and Kc,d

The gain ratios stay close to constant over the examined range of gains, with Kc,p ≈
5666Kc,d and Km,p ≈ 16842Km,d, suggesting these are at least local optima. What we see

in Figure 3.1 is a strong decrease in mean square error with increase in the VSCMG gain,

but the MTA gain is only effective within a region. Before and after this region, the error is

close to constant with respect to the MTA gain.
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For log10(Kc,d) = −0.2 the lower bound log10(Km,d,lb) ≈ 6.2 and the upper bound

log10(Km,d,ub) ≈ 8.8. For log10(Kc,d) = 0.8 the lower bound log10(Km,d,lb) ≈ 7.2 and

the upper bound log10(Km,d,ub) ≈ 9.8. The approximate correlations are log10(Km,d,lb) =

log10(Kc,d)− 6.4 and log10(Km,d,ub) = log10(Kc,d)− 9. Between these two regions, the MTA

gain decreases the error by a consistent factor of approximately 101.2.

3.3.2 Simulation of Key Cases

Physically, the lower bound corresponds to when the magnitude of MTA torque is large

enough to be significant against the VSCMG torque, and the upper bound corresponds to

when the torque exerted by the MTAs matches that of the VSCMG in magnitude. Figure

3.3 is taken with Kc,d = −0.4 and the Km,d lower bound of Km,d = 6, and we can see that

the torques from the VSCMG reach a magnitude of 10−5 Nm, an order of magnitude higher

than the MTA torques of under 10−6 Nm. Figure 3.4 is taken at the upper bound of Km,d =

8.6. The MTAs and VSCMG now have very close torque magnitudes of approximately

5 × 10−5 Nm. If Kc,d is reduced to −1.4, Km,d = 8.6 is now well past the effective region’s

upper bound of 7.6, but as Figure 3.5 shows, the magnitudes of torque from both the VSCMG

and MTA remain stubbornly similar. This is not due to the performance limits being reached;

the MTA dipole moments are several orders of magnitude below their maximum. This is

because the VSCMG is necessary to fill in the lost degree of freedom inherent to MTA

systems, so beyond the point where similar torques are achieved, no further increase to the

difference between gains will diminish the VSCMG in favour of the MTA.

A simulation is provided where the VSCMG gains are zeroed and the MTA gains are

kept exactly the same as in Figure 3.4 to illustrate the difference the VSCMG makes. While

angle error is on the order of 10−8 rad in Figure 3.4, it increases to 0.2 rad when the VSCMG

is disabled in the simulation shown in Figure 3.6. Here we see that when it comes to steady

state angular position, the hybrid VSCMG MTA ACS is a huge improvement over a pure

MTA system.
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Figure 3.3: Simulation of Steady-State where Kc,d = 10−0.4, Km,d = 106
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Figure 3.4: Simulation of Steady-State where Kc,d = 10−0.4, Km,d = 108.6
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Figure 3.5: Simulation of Steady-State where Kc,d = 10−1.4, Km,d = 108.6
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Figure 3.6: Simulation of Steady-State where Kc,d = 0, Km,d = 108.6
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3.4 Detumbling Simulations

This scenario starts the spacecraft with an angular velocity and requires it to slow down and

stop. This can be done with either a D or PD controller. If the former, then the spacecraft

will stop in an arbitrary position. If the latter, the spacecraft will attempt to return to a

“home” position.

3.4.1 D Controller

The simulations in this section make use of the control laws in Equation 3.6. As implied by

the Lyapunov stability proof in Section 3.1.2, there is a monotonic decrease in convergence

time with increased D gains. There are physical upper bounds however; the controllers

cannot actuate the MTAs and VSCMG beyond their performance limits. These rather

unsophisticated performance predictions are borne out by the simulations in Figures 3.7 to

3.9.

The initial angular rate chosen was ω0 =
[
10 0 0

]T
deg/s =

[
π/18 0 0

]T
rad/s.

The simulations in Figures 3.7, 3.8, and 3.9 are conducted using the VSCMG/MTA

D gain ratio for equal torque found in Section 3.3.1. They are each offset by one order

of magnitude from each other. We see in Figure 3.7 that convergence time is fairly long at

approximately 1 orbital period and while the actuators do hit their performance limits, these

periods are fairly early and short. With higher gains, the convergence time shortens and the

actuators spend more time operating at their performance limits. This is shown in Figure

3.9, where the gyroscope acceleration and MTAs in particular spend large portions of the

convergence time operating at their limits, and the convergence time shortens to roughly 7%

of an orbital period.

The trend is also apparent that with higher gains, the VSCMG torques overwhelm the

MTA torques. This is because the MTAs hit their performance limits with fairly low gains,

unlike the VSCMG. When both actuator types are inside their performance limits, they do

produce torques of similar magnitude.
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Figure 3.7: Simulation of D-Controller Detumbling where Kc,d = 10−1.4, Km,d = 107.6
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Figure 3.8: Simulation of D-Controller Detumbling where Kc,d = 10−0.4, Km,d = 108.6
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Figure 3.9: Simulation of D-Controller Detumbling where Kc,d = 100.6, Km,d = 109.6
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3.4.2 PD Controller

The simulations in this section make use of the control laws in Equation 3.9. The use of a

PD controller leads to different convergence criteria than just a D controller: the spacecraft

is considered to be “converged” when both the angular position ε and the angular velocity

ω are sufficiently small.

To focus on the controllers returning to position rather than the spacecraft deceleration,

the initial angular velocity is reduced to ω0 =
[
3 0 0

]T
deg/s =

[
π/60 0 0

]T
rad/s.

A similar method to Section 3.3 was used to choose gains for simulation. Kc,d and Km,d

were independently varied and Matlab’s fmincon optimizer was used to find optimal Kc,p and

Km,p as ratios of their corresponding D gain. The objective it was optimized against however

was not MSE error, as that is not as meaningful for this scenario as it is for steady-state.

The objective here is convergence time, i.e. the time from the simulation start to when the

absolute values of the terms in ε, ω, ċ, and m are all less than a tolerance value, chosen to

be 10−3.

Three sets of gains were tested. All three had a 9 order of magnitude separation between

Kc,d and Km,d as in the last section. In Figure 3.10, Kc,d = 100 and the controller converges

in about a quarter orbital period. The MTA is at its dipole limit for most of the simulation,

leading to the VSCMG overwhelming it in applied torque. As expected higher gains lead to

faster convergence; Figure 3.11 has a convergence time of a little over 5% of an orbital period.

Here however, the gyro is clearly at its acceleration limit for most of the simulation. With

both actuators operating close to their limits, it is no surprise that in Figure 3.12, despite

the Kc,d being increased by another order of magnitude, it barely converges any faster than

the last simulation.
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Figure 3.10: Simulation of PD-Controller Detumbling where Kc,d = 100, Km,d = 109
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Figure 3.11: Simulation of PD-Controller Detumbling where Kc,d = 101, Km,d = 1010
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Figure 3.12: Simulation of PD-Controller Detumbling where Kc,d = 102, Km,d = 1011



Chapter 4

Linear Control

While manual and numerical tuning are the most accessible options for the nonlinear con-

troller, linearizing the model and posing it as an LQR problem makes it possible to find an

optimal controller. Because this is a highly nonlinear problem however, only the steady-state

disturbance case is considered in this section; the detumbling case would very quickly leave

the region where the linearized model is valid.

4.1 Linearization and LQR Optimization

The process for setting up an LQR problem is described in detail in Section 1.5. The state

vector is x =
[
ε ω c

]T
∈ IR9×1 and the control vector is u =

[
ċ m

]T
∈ IR6×1. Finding

an optimal control matrix K such that u = −Kx requires knowing four other matrices:

state matrices A ∈ IR9×9 and B ∈ IR9×6 as in Equation 1.3a and cost matrices Q ∈ IR9×9

and R ∈ IR6×6 as in Equation 1.3b. The system when linearized about steady-state initial

conditions has the following A and B:

A =



0 0 0 1
2

0 0 0 0 0

0 0 0 0 1
2

0 0 0 0

0 0 0 0 0 1
2

0 0 0

2.4237× 10−9 0 0 0 − π
105

0 0 0 0

0 1.8498× 10−6 0 π
125

0 0 0 0 0

−1.8851× 10−9 −1.8851× 10−9 1.1406× 10−6 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


(4.1)
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B =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
π

105
0 0 0 1.2119× 10−6 0

0 π
125

0 −1.0180× 10−6 0 0

0 0 1
27000

0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


(4.2)

The only requirement on the Q and R matrices is that they be positive definite. This

gives a large number of degrees of freedom at first, but simplifying assumptions can be made:

1. Q and R are diagonal matrices with positive elements. (DoF = 15)

2. The three components of ε, ω, and m have the same coefficients. (DoF = 9)

3. The two gimbal components of c and ċ have the same coefficients. (DoF = 7)

4. For equal torque between the gimbal and gyro terms of c and ċ, the gimbal terms are

first weighted by initial gyro rate Ωg. On top of this, they are weighted by the range

of motion available to each actuator. (DoF = 5)

5. For equal torque between the VSCMG and MTA terms of u, m and ċ are first weighted

by Ig/B where B is the scalar magnitude of the magnetic field. On top of this, they

are weighted by the range of motion available to each actuator. (DoF = 4)

From the magnetic field model in Equation 1.5, we can calculate the magnitude of mag-

netic field B as per Equation 4.3. Because we cannot have time-varying terms in our Q

and R matrices, the value taken for B will be the average over a quarter orbit as calcu-

lated in Equation 4.4, where E(k) is the complete elliptic integral of the second kind and

k =
√

3 sin(φ)i. For an inclination φ = 40◦, E(k) ≈ 2.

B =
B0

R3

√
1 + 3 sin2(nt) sin2(φ) (4.3)

Bavg =
2n

π

B0

R3

∫ π
2n

0

√
1 + 3 sin2(nt) sin2(φ) =

2n

π

B0

R3
E
(√

3 sin(φ)i
)
≈ 4n

π

B0

R3
(4.4)

This leaves us with four tunable terms: Qε, Qω, Qc, and Ru. They form the Q and R

matrices as follows:
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Q = diag
([
Qε Qε Qε Qω Qω Qω

QcΩg
γ̇max

QcΩg
γ̇max

Qc
Ω̇g,max

])
R = diag

(
Ru

[
IgΩg
γ̇max

IgΩg
γ̇max

Ig
Ω̇g,max

Bavg
mmax

Bavg
mmax

Bavg
mmax

]) (4.5)

Running these matrices through Equation 1.3e, we obtain a solution X which is used

to compute the control matrix K. This controller can now either be plugged into the

linearized system (see Equation 1.3f) or into the nonlinear system (Equation 4.6) to evaluate

its performance. Because it is redundant given the control input regulation provided by R

and contradicts the assumption of unbounded input u for LQR optimization, the rate limits

are not enforced for the linear controller.

ẋ =

 ε̇ω̇
ċ

 =


1
2
ωq

I−1
sat

[
−
[
G −B×

b

]
Kx+ 3µ

R5p
×
b Isatpb +m×

resBb − ω× (Isatω +Lcmg)
]

−
[
1 0

]
Kx


(4.6)

Note that in Equation 4.6, 1 is the 3× 3 identity matrix and 0 is the 3× 3 zero matrix.

We also note that the ratio between the R matrix coefficient on the VSCMG gimbal

terms and the MTA terms (see Equation 4.7). This is a hint toward the order of magnitude

difference between the gains on the MTAs and VSCMG: the order of magnitude difference

of 9.4 between actuator effectiveness is fairly close to the order of magnitude difference of 9

between the D gains on the MTA and VSCMG at equal torque (see Section 3.3.1). Because

this is also weighted by the range of motion on each actuator, magnitude differences will

vary with different combinations of actuators, but this provides a useful start to finding the

proper ratio of gains.

IgΩg
γ̇max
Bavg
mmax

=
IgΩgmmaxπR

3

γ̇max4nB0

≈ 109.4 (4.7)

4.2 Characterizing the Optimization Space

With the assumptions made in the last section, the number of free terms in the Q and R

matrices has been narrowed down to four: weights for angular position error Qε, angular

velocity error Qω, gimbal position error Qc, and control input error Ru. Qε and Qω are

somewhat analogous to the P and D gains and can be varied for similar effect. Qc and Ru

have a similar relationship, as the latter includes gimbal rates error. As there was a clear

optimal ratio between the P and D gains found by fmincon in Section 3.3.1, it is possible for
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a similar optimum to be found between Qc and Ru assuming values for Qε and Qω.

Figure 4.1 was generated assuming Qε = 107 and Qω = 105. There is a clear minimum

Ru for a given Qc, visible as a valley on the plot.

Figure 4.1: Mean Square Error over Qc and Ru assuming Qε = 107 and Qω = 105

While Qc technically weighs the state vector and Ru the control input, the fact that they

are coupled through the VSCMG implies the optimal weighing that is visible in Figure 4.1.

The monotonically decreasing error with Qc is expected; a lower consideration of gimbal

position error means a greater relative consideration of the spacecraft position error. Then

given a particular Qc, there must be an appropriate Ru to damp the VSCMG motion.

We can see this manifest in simulation. Consider the case where Qc = 10−2. The optimal

Ru ≈ 108.15. In the case where Ru is low (Ru = 107), we see in Figure 4.2 that the controller

causes a lot of high frequency, high amplitude motion in the VSCMG, especially near the

beginning. When Ru is high (Ru = 1010), we see in Figure 4.3 that the motion of the VSCMG

is much smoother and lower amplitude, but the angular position error reaches a much higher

magnitude before corrective torque is applied. At the optimal value of Ru = 108.15, Figure

4.4 shows that the motion is smoother than in the low case while angular position error is

corrected in a much shorter time than in the high case.
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Figure 4.2: Simulation of Linear Controller where Qε = 107, Qω = 105, Qc = 10−2, and
Ru = 107
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Figure 4.3: Simulation of Linear Controller where Qε = 107, Qω = 105, Qc = 10−2, and
Ru = 1010
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Figure 4.4: Simulation of Linear Controller where Qε = 107, Qω = 105, Qc = 10−2, and
Ru = 108.15



Chapter 5

Limitations and Future Work

5.1 Spacecraft Design and Mission Considerations

In an effort to put the torques from the VSCMG and MTAs on similar orders of magnitude,

the chosen specifications were for a relatively small VSCMG and relatively strong MTAs.

This is intended to be useful for small spacecraft design, as the largest available MTAs are

more readily usable on small spacecraft than the largest available CMGs, which are usable

on spacecraft as large as the ISS.[10] It is intrinsic to the actuators’ designs that the VSCMG

will provide far more torque than the MTA. Future analysis of this actuator combination

could consider designs that provide greater difference in magnitude between VSCMG and

MTA torque.

The control inputs were assumed throughout this document to be exactly controllable.

A higher fidelity model would take into account the physical effects that limit the control

inputs. In particular, it would model the electromagnetic hysteresis on the MTAs, the

servo controllers driving the VSCMG gimbal carriages, and the motor controller driving

the gyroscope. A higher fidelity model may also model the angular momentum and applied

torque from the gimbal carriages and from the gyroscope about all axes, but these are unlikely

to be significant against the angular momentum and torque due to the sources considered in

this thesis.

The scenarios considered in this thesis were single-purpose and extremely simple. Longer-

term missions which require switching between different target angular positions and rates,

different power consumption goals, etc. may lead to different compromise controllers, or

more sophisticated control schemes than presented here. Future studies could consider the

implications of, for example, tracking a distant moving target as though aiming a space

telescope, maintaining a particular angular rate as though in a geosynchronous orbit, or

explicitly incorporating VSCMG desaturation into the combined controller.

37
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The orbit studied in this thesis was chosen to be relatively low altitude for higher usable

magnetic field strength and moderate inclination to produce some variation in the magnetic

field vector, which as previously discussed allows an MTA-equipped spacecraft to apply

control torque about all three axes when spread over an orbit. The use of MTAs restricts

a spacecraft of this configuration to Earth orbit, but the utility of a VSCMG has yet to be

evaluated in-depth at the extremes of a polar/equatorial orbit or a highly elliptical orbit,

which would lead to significant variation in magnetic field strength and direction.

5.2 Design Optimization Criteria

The evaluation criteria considered by this thesis were fairly straightforward. For the steady-

state case, it was angular position mean square error over a relatively long time. For the

detumbling case, it was convergence time, i.e. time from the simulation start to when angular

velocity (and angular position if PD controller was used) became sufficiently small.

If power is in excess this is acceptable, but minimizing power consumption is usually

desirable on small spacecraft where solar panel area and battery space are limited and ther-

monuclear generators are impractical. Making use of performance specifications to determine

power consumption for given control inputs would allow power to be used as an optimization

criterion. If this is weighted with a performance objective like mean square error, then it

could be used to determine the most energy-efficient control schemes for a setup like this

and contrast it with pure MTA or VSCMG systems.

For more sophisticated missions as discussed in the previous section, objectives may

change. For example, a power-efficient controller may be used for the long-term segments

where the spacecraft has to hold some angular position, but switch to a power-hungry con-

troller when adjusting to a completely new position to minimize down-time. A study of

common, planned, or desired missions for small spacecraft that may make use of this ACS

setup would be useful to tailor objective criteria and design a more specific and optimal

controller.



Conclusion

In this thesis I analyzed a proposed ACS consisting of a VSCMG and three orthogonal MTAs

for small, Earth-orbiting spacecraft. I showed that such a system was precisely controllable to

a level not achievable with an MTA system in long-term steady-state control. I also showed

that in the detumbling case, the hybrid ACS is able to continue to reduce convergence time

long after the MTA performance limits have been reached by using the excess of torque

available from the VSCMG. I also demonstrated the functionality of a steady-state LQR

controller simplified to only four degrees of freedom, despite the highly nonlinear nature of

the spacecraft and ACS dynamics.

On top of demonstrating the promise of the hybrid system, the first steps have been made

to characterizing its performance against the control inputs. In steady state, the effective

region for the MTA D gain has been identified as a function of the VSCMG D gain and the

factor by which it improves performance is consistent. The order of magnitude difference

between the control gains is characterizable by the actuators’ specifications and dynamics

and is fairly close to the empirical values found. A minimal error relation between two of the

free terms in the Q and R matrices was found, potentially reducing the degrees of freedom

further to only three. And in detumbling, the D-controller system is shown to decelerate no

matter the magnitude of gains, and the PD-controller system is shown to converge in the

cases tested.

There are limitations that could be addressed by future research. Only one orbit, two

scenarios, and one spacecraft were considered, and the empirical relations found in this thesis

will almost certainly change with different specifications. The models for dynamics and

control were fairly idealized and straightforward, not modelling hysteresis, lag, or backlash

in electromechanical components in the physical hardware. A specific ‘desaturation mode’

could be implemented to bring the gimbal angles and gyro rate back to initial conditions

when the MTAs are aligned properly with the magnetic field.

The extremely increased precision and convergence speed associated with this hybrid

system opens the door to microsatellite missions that take advantage of these qualities.

Low-cost geosynchronous microsatellites can stay focused on the same location with ground
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position error on the order of metres. Low-cost space telescopes could use such a system

to greatly reduce angular wobble as it takes long-exposure photographs. When changing

targets, it would spend less time adjusting position and more time in operation. As a

compromise between hardware complexity, size, and performance, the VSCMG/MTA system

has the potential to make entire categories of mission far easier to design and accomplish.
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Appendix A

Matlab Code

The simulation code for the proposed spacecraft was written in Matlab. The functions in this

section were used to simulate the spacecraft dynamics with the linear controller and nonlinear

controller in detumbling and steady-state scenarios. It can be found on Github at https:

//github.com/ailersic/vscmg-mta-spacecraft. If bugs are identified or improvements

made to this code, the updated version can be found there.

A.1 vscmg mt dynamics.m

This function represents the basic dynamics equation ẋ = f(x,u, t) where x is the state

vector, u is the input vector, and t is the current time. The function inputs are as follows:

x State vector x containing angular position ε, angular rates ω, and VSCMG state c

u Control input u containing VSCMG rates ċ and MTA dipole moments m

t Current simulation time t

params Structure containing spacecraft and mission specifications, including moment of

inertia matrix, orbital radius, etc.

And the outputs:

xdot Derivative of state vector ẋ

cdot Derivative of gimbal state vector ċ

m MTA dipole moment m

tau mta Torque due to MTAs τmta

tau vscmg Torque due to VSCMG τvscmg

tau ggs Torque due to GGS τggs

tau magres Torque due to residual magnetic field τmagres

44
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function [xdot, cdot, m, tau_mta, tau_vscmg, tau_ggs, tau_magres] ...

= vscmg_mt_dynamics(x, u, t, params)

%% Read input

eps = x(1:3, :);

eta = real(sqrt(1 - sum(eps.^2, 1)));

q = [eta; eps];

w = x(4:6, :);

c = x(7:9, :);

cdot = u(1:3, :);

m = u(4:6, :);

nt = size(x, 2);

%% Physical constants

mu = 6.67e-11*5.972e24; % m^3/s^2

B0 = -7.9e15; % Wb m

%% Orbital position and magnetic field

n = sqrt(mu/(params.R^3)); % 1/s

p_i = params.R*[cos(n*t’); ...

sin(n*t’)*cos(params.incl); ...

sin(n*t’)*sin(params.incl)];

B_i = B0/(params.R^5)*[3*p_i(1,:).*p_i(3,:); ...

3*p_i(2,:).*p_i(3,:); ...

2*p_i(3,:).^2 - p_i(1,:).^2 - p_i(2,:).^2];

C_bi = zeros(3, 3, nt);

p_b = zeros(3, nt);

B_b = zeros(3, nt);

for i=1:nt
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C_bi(:, :, i) = [q(1, i)^2 + q(2, i)^2 - q(3, i)^2 - q(4, i)^2, ...

2*q(2, i)*q(3, i) - 2*q(1, i)*q(4, i), ...

2*q(2, i)*q(4, i) + 2*q(1, i)*q(3, i); ...

2*q(2, i)*q(3, i) + 2*q(1, i)*q(4, i), ...

q(1, i)^2 - q(2, i)^2 + q(3, i)^2 - q(4, i)^2, ...

2*q(3, i)*q(4, i) - 2*q(1, i)*q(2, i); ...

2*q(2, i)*q(4, i) - 2*q(1, i)*q(3, i), ...

2*q(3, i)*q(4, i) + 2*q(1, i)*q(2, i), ...

q(1, i)^2 - q(2, i)^2 - q(3, i)^2 + q(4, i)^2];

p_b(:, i) = C_bi(:, :, i)*p_i(:, i);

B_b(:, i) = C_bi(:, :, i)*B_i(:, i);

end

%% VSCMG

G = zeros(3, 3, nt);

L_vscmg = zeros(3, nt);

for i=1:nt

G(:, :, i) = params.Icmg*[cos(c(1, i))*cos(c(2, i))*c(3, i), ...

-sin(c(1, i))*sin(c(2, i))*c(3, i), ...

sin(c(1, i))*cos(c(2, i));

0, ...

cos(c(2, i))*c(3, i), ...

sin(c(2, i)); ...

-sin(c(1, i))*cos(c(2, i))*c(3, i), ...

-cos(c(1, i))*sin(c(2, i))*c(3, i), ...

cos(c(1, i))*cos(c(2, i))];

L_vscmg(:, i) = params.Icmg*[sin(c(1, i))*cos(c(2, i))*c(3, i); ...

sin(c(2, i))*c(3, i); ...

cos(c(1, i))*cos(c(2, i))*c(3, i)];

end

%% Rigid body dynamics
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tau_mta = zeros(3, nt);

tau_vscmg = zeros(3, nt);

tau_ggs = zeros(3, nt);

tau_magres = zeros(3, nt);

tau = zeros(3, nt);

wdot = zeros(3, nt);

for i=1:nt

tau_mta(:, i) = cross(m(:, i), B_b(:, i));

tau_vscmg(:, i) = G(:, :, i)*cdot(:, i);

tau_ggs(:, i) = 3*mu/(params.R^5)*cross(p_b(:, i), ...

params.Isat*p_b(:, i));

tau_magres(:, i) = cross(params.mres, B_b(:, i));

tau(:, i) = tau_mta(:, i) + tau_vscmg(:, i) + ...

tau_ggs(:, i) + tau_magres(:, i);

wdot(:, i) = params.invIsat*(tau(:, i) - ...

cross(w(:, i), ...

params.Isat*w(:, i) + ...

L_vscmg(:, i)));

end

%% Assemble xdot

qdot = zeros(4, nt);

for i=1:nt

qdotq = 0.5*quaternion([0; w(:, i)]’)*quaternion(q(:, i)’);

[qdot(1, i), qdot(2, i), qdot(3, i), qdot(4, i)] = parts(qdotq);

end

xdot = [qdot(2:4, :); wdot; cdot];

end
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A.2 vscmg mt control.m

This function represents the nonlinear control laws detailed in the thesis body, of the form

u = f(x, t) where x is the state vector, u is the input vector, and t is the current time. The

function inputs are as follows:

x State vector x containing angular position ε, angular rates ω, and VSCMG state c

t Current simulation time t

K Vector of control gains Kc,d, Km,d, Kc,p, and Km,p

params Structure containing spacecraft and mission specifications, including moment of

inertia matrix, orbital radius, etc.

And the output:

u Control input u containing VSCMG rates ċ and MTA dipole moments m

function u = vscmg_mt_control(x, t, K, params)

%% Read input

eps = x(1:3, :);

eta = real(sqrt(1 - sum(eps.^2, 1)));

q = [eta; eps];

w = x(4:6, :);

c = x(7:9, :);

nt = size(x, 2);

%% Parse control inputs

KcD = K(1);

KmD = K(2);

KcP = K(3);

KmP = K(4);

%% Physical constants

mu = 6.67e-11*5.972e24; % m^3/s^2
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B0 = -7.9e15; % Wb m

%% Orbital position and magnetic field

n = sqrt(mu/(params.R^3)); % 1/s

p_i = params.R*[cos(n*t’); ...

sin(n*t’)*cos(params.incl); ...

sin(n*t’)*sin(params.incl)];

B_i = B0/(params.R^5)*[3*p_i(1,:).*p_i(3,:); ...

3*p_i(2,:).*p_i(3,:); ...

2*p_i(3,:).^2 - p_i(1,:).^2 - p_i(2,:).^2];

C_bi = zeros(3, 3, nt);

p_b = zeros(3, nt);

B_b = zeros(3, nt);

for i=1:nt

C_bi(:, :, i) = [q(1, i)^2 + q(2, i)^2 - q(3, i)^2 - q(4, i)^2, ...

2*q(2, i)*q(3, i) - 2*q(1, i)*q(4, i), ...

2*q(2, i)*q(4, i) + 2*q(1, i)*q(3, i); ...

2*q(2, i)*q(3, i) + 2*q(1, i)*q(4, i), ...

q(1, i)^2 - q(2, i)^2 + q(3, i)^2 - q(4, i)^2, ...

2*q(3, i)*q(4, i) - 2*q(1, i)*q(2, i); ...

2*q(2, i)*q(4, i) - 2*q(1, i)*q(3, i), ...

2*q(3, i)*q(4, i) + 2*q(1, i)*q(2, i), ...

q(1, i)^2 - q(2, i)^2 - q(3, i)^2 + q(4, i)^2];

p_b(:, i) = C_bi(:, :, i)*p_i(:, i);

B_b(:, i) = C_bi(:, :, i)*B_i(:, i);

end

%% VSCMG

G = zeros(3, 3, nt);

for i=1:nt
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G(:, :, i) = params.Icmg*[cos(c(1, i))*cos(c(2, i))*c(3, i), ...

-sin(c(1, i))*sin(c(2, i))*c(3, i), ...

sin(c(1, i))*cos(c(2, i)); ...

0, ...

cos(c(2, i))*c(3, i), ...

sin(c(2, i)); ...

-sin(c(1, i))*cos(c(2, i))*c(3, i), ...

-cos(c(1, i))*sin(c(2, i))*c(3, i), ...

cos(c(1, i))*cos(c(2, i))];

end

%% Calculate control inputs

KcD = diag([KcD, ...

KcD, ...

KcD*params.x0(9)*params.cdotmax(3)/params.cdotmax(1)]);

KcP = diag([KcP, ...

KcP, ...

KcP*params.x0(9)*params.cdotmax(3)/params.cdotmax(1)]);

cdot = zeros(3, nt);

m = zeros(3, nt);

for i=1:nt

cdot(:, i) = -KcD*G(:, :, i)’*w(:, i) - KcP*G(:, :, i)’*eps(:, i);

m(:, i) = -KmD*cross(B_b(:, i), w(:, i)) - ...

KmP*cross(B_b(:, i), eps(:, i));

for j=1:3

cdot(j, i) = max(min(cdot(j, i), params.cdotmax(j)), ...

params.cdotmin(j));

m(j, i) = max(min(m(j, i), params.mmax(j)), params.mmin(j));

end

end

u = [cdot; m];

end
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A.3 vscmg mt linearization.m

This function linearizes the dynamics given by vscmg_mt_dynamics.m and produces the

matrices A and B to produce linearized equations of the form ẋ = Ax+Bu where x is the

state vector and u is the input vector. It then uses the cost matrices Q and R to calculate

the optimized control matrix K. The function inputs are as follows:

Q Cost matrix Q that regulates the state vector x

R Cost matrix R that regulates the control vector u

params Structure containing spacecraft and mission specifications, including moment of

inertia matrix, orbital radius, etc.

And the output:

K Optimized control matrix K that is used to calculate the control input u = Kx

A Linearized dynamics matrix A

B Linearized dynamics matrix B

function [K, A, B] = vscmg_mt_linearization(Q, R, params)

%% Linearize system

dx = 1e-6;

du = 1e-6;

A = zeros(length(params.x0), length(params.x0));

B = zeros(length(params.x0), length(params.u0));

for i=1:length(params.x0)

dx0 = [zeros(i-1, 1); dx; zeros(length(params.x0)-i, 1)];

A(:, i) = (vscmg_mt_dynamics(params.x0+dx0, params.u0, 0, ...

params) - ...

vscmg_mt_dynamics(params.x0-dx0, params.u0, 0, ...

params))/(2*dx);

end

for i=1:length(params.u0)

du0 = [zeros(i-1, 1); du; zeros(length(params.u0)-i, 1)];

B(:, i) = (vscmg_mt_dynamics(params.x0, params.u0+du0, 0, ...
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params) - ...

vscmg_mt_dynamics(params.x0, params.u0-du0, 0, ...

params))/(2*du);

end

%% Check controllability

if rank(ctrb(A, B)) == length(params.x0)

disp(’Controllable!’)

else

disp(’Not controllable!’)

end

%% LQR Matrices and Riccati

N = zeros(length(params.x0), length(params.u0));

if min(eig([Q, N; N’, R])) <= 0

disp(’Not solvable!’)

end

K = -lqr(A, B, Q, R, N);

end

A.4 vscmg mt sim.m

Simulates the spacecraft dynamics using the nonlinear controller until the final simulation

time is reached, at which point it integrates the square of position error over the entire time

history and returns that as the controller error. It is intended to be used with steady-state

simulations. The function inputs are as follows:

K Vector of control gains Kc,d, Km,d, Kc,p, and Km,p

params Structure containing spacecraft and mission specifications, including moment of

inertia matrix, orbital radius, etc.

And the output:

err Integral of square of position error over entire time history
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function err = vscmg_mt_sim(K, params)

%% Simulate case

options = odeset(’RelTol’,1e-5);

[tsol, xsol] = ode15s(@(t, x) vscmg_mt_dynamics(x, ...

vscmg_mt_control(x, t, K, params), t, params), [0, params.tf], ...

params.x0, options);

%% Calculate error

eps = xsol(:, 1:3);

err = sum(trapz(tsol, eps.^2));

end

A.5 vscmg mt sim detumble.m

Simulates the spacecraft dynamics using the nonlinear controller until the final simulation

time is reached, at which point it attempts to find the time taken until all control inputs and

error terms converge within tol of zero. This convergence time is returned as the controller

error. It is intended to be used with detumbling simulations. The function inputs are as

follows:

K Vector of control gains Kc,d, Km,d, Kc,p, and Km,p

params Structure containing spacecraft and mission specifications, including moment of

inertia matrix, orbital radius, etc.

And the output:

convtime Time until all control inputs and error terms converge to within tol

function convtime = vscmg_mt_sim_detumble(K, params)

%% Simulate case

options = odeset(’RelTol’,1e-5);

[tsol, xsol] = ode15s(@(t, x) vscmg_mt_dynamics(x, ...

vscmg_mt_control(x, t, K, params), t, params), [0, params.tf], ...

params.x0, options);

usol = vscmg_mt_control(xsol’, tsol, K, params)’;
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%% Calculate convergence time

tol = 1e-3;

isol = [];

for i=1:length(tsol)

if all(xsol(i, 1:6) < tol*ones(1, 6)) && all(usol(i, :) < ...

tol*ones(1, 6))

isol = i;

break;

end

end

if isempty(isol)

convtime = params.tf;

else

convtime = tsol(isol);

end

end

A.6 vscmg mt sim lin.m

Simulates the spacecraft dynamics using the linear controller until the final simulation time

is reached, at which point it integrates the square of position error over the entire time

history and returns that as the controller error. It is intended to be used with steady-

state simulations. The commented-out code is to simulate with the linearized dynamics for

debugging purposes; this was not used for controller evaluation at any point in this thesis.

The function inputs are as follows:

K Control matrix K that is used to calculate the control input u = Kx

params Structure containing spacecraft and mission specifications, including moment of

inertia matrix, orbital radius, etc.

And the output:

err Integral of square of position error over entire time history
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function err = vscmg_mt_sim_lin(K, params)

%% Simulate case either with linearized or full dynamics

%[~, A, B] = vscmg_mt_linearization(eye(9), eye(6), params);

%[tsol, xsol] = ode15s(@(t, x) (A + B*K)*(x - params.x0), ...

% [0, params.tf], params.x0);

[tsol, xsol] = ode15s(@(t, x) vscmg_mt_dynamics(x, ...

K*(x - params.x0), t, params), [0, params.tf], params.x0);

%% Calculate error

eps = xsol(:, 1:3);

err = sum(trapz(tsol, eps.^2));

end


